Week 7-
Torsion

Statically indeterminate problems
in torsion

Torsional stress concentration

Torsion of a solid non-circular
member

Torsion of an inelastic member
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=PFL  Normal load vs. Torsion
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Static indeterminacyin
Torsion

When a system is statically indeterminate we distinguish between two
cases:

= Internal indeterminacy: here there is one more static member in the
system than required to ensure static equilibrium.

= External indeterminacy: Here there is one more external reaction force
than required to ensure static equilibrium.
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Statically indeterminate
torsion problems -
JG Displacement stiffness method

L We can also treat statically
indeterminate systems in torsion
with the the displacement stiffness
method in matrix form.

We can make use of the same
approach we developed for the
statically indeterminate bars, but
now using the torsional stiffness:
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Example: External
indeterminacy

A composite bar consists of two sections with diameter d,
and dg respectively is clamped on both sides at walls (points
A and B). A torque T acts on the point where the thickness
changes (point C).

Calculate:
= An expression for the reaction torques at point A and B

= The maximum shear stresses in the bar sections AC and
CB

» The angle of twist at point C
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=PrL  Statically indeterminate torsion problems

= When we encounter internal static indeterminacy in a composite shaft of two
or more tubes or materials together, we can use the displacement stiffness
method (all shafts have same angle of twist)

= k¢ torsional stiffness T JG ~ Nm
ki =—=— [k]=—
) L rad
= The torque for the ith shaft is then:
T = (k)i - ¢

= The total torque is then:

T=3 (k)i ¢
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Example: Internal
indeterminacy

A composite bar consists of a bar with an
outer diameter d; and tube with an outer
diameter d, joined at one end and both
rigidly connected to the wall. Derive

« aformula for the angle of twist for the
composite and

« the formula for the reaction torques at

the wall acting on the tube and the bar.
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° o 020 dimension, large stress
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The maximum shear stress in torsion is then: .
Tc In a similar way to the stress
Trmaz = K - — concentration in tension, we can use
\{, a stress concentration factor to

smaller shaft estimate the stress concentration




=PFL  Transmission of power by a shaft

= Work: the energy developed by a force acting over a distance against a

resistance
« Linear distance: W=F. -Ax
- Rotational distance: W=T-A0 [0]=rad

= Power: work done by unit of time:

16 d N
P=—=ul wl = 2P = 2 — W (Watt)
S S

= Often used unit: horsepower (hp)

frolb _ o ftolb _pegin-ib
min S S

1hp = 33.000 = 745.TW
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1 kilometer ™
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Common Imperial Units

1in=2.54cm
1ft=12in=0.3048 m

11b =16 oz = 0.4536kg

1 gallon = 3.7854 |

1 psi = 1 pound/in2= 6894.8 Pa

1hp = 300 (ft*Ib)/min = 39600 (in*Ib)/min=
745.7W
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Examples for Torsion:
Torsional stress
concentration

Find the required fillet radius for the
juncture of a 6-in.-diameter shaft with
a 4-in.-diameter segment if the shaft
transmits 110 hp at 100 rpm and the
maximum shear stress is limited to
8000 psi.
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=PFL  Torsion of a rectangular bar

= |n our derivation for the torsion formula we have assumed that plane sections
remain plane in torsion. This is only true for members with infinite axial
symmetry (such as round bars or tubes).

= |n a rectangular bar, there is no such symmetry and the cross sections will
deform.

= For rectangular bars of length L and sides a&b (a>b) we can use the formulas:

TL
Tmax =
Cl a b2
= And the torsion formula: b= TL
CQ a b3G
The torsional stiffness is then: k= = = Coab®

& L



=PFL  Torsion of a rectangular bar

= For rectangular bars of length L
and sides a&b (a>b) we can use
the formulas:

TL
Tmax — Cl a b2

= And the torsion formula:

5= TL
B 02 ab3G
= The torsional stiffness is then:
T G
k, = — = Coab®—

& L

C,

a/b Ci

1.0 0.208 0.1406
1.2 0.219 0.1661
1.5 0.231 0.1958
2.0 0.246 0.229
2.5 0.258 0.249
3.0 0.267 0.263
4.0 0.282 0.281
5.0 0.291 0.291
10.0 0.321 0.312
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=PFL - Torsion of an inelastic
circular member

= |f we are beyond the linear elastic regime, our torsion formula is no longer
correct (we've assumed Hooke’s law during its derivation)!

= However, the assumption that shear strain is linear with r still holds:

r
’Y(T) - E’Ymaa:

= Since we no longer have Hooke’s law, we have to use the torsional stress-
strain diagram of the material to find the shear stress

= For each r we can calculate the corresponding y, and from the stress-strain
curve we can read the stress T at each r. We can plot then 1 as a function of r



=PFL - Torsion of an inelastic
circular member

A

Tmax
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= With the known stress distribution we
can then calculate the internal
resisting torque at any given cross-

section:
T:/(TdA)r
A

= For a circular cross section:

T = 27T/ r27(r)dr
0

= |f there is no analytical expression for
1(r), we have to solve the integral
numerically



=PrL

Torsion of an inelastic bar: Ultimate
torque

= Ultimate torque T the maximum torque a member can take before failure

= We can calculate Ty by setting 1,,2x= Ty and do the integration or do a torsion
experiment by twisting the circular member until it breaks.
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