
Week 7: 
Torsion

1. Statically indeterminate problems 
in torsion

2. Torsional stress concentration
3. Torsion of a solid non-circular 

member
4. Torsion of an inelastic member
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Normal load vs. Torsion 2

Spring Bar in Tension Bar in Torsion

Geometric property

Materials property

Hoooke’s Law

Strain distribution
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When a system is statically indeterminate we distinguish between two 
cases:
§ Internal indeterminacy: here there is one more static member in the 

system than required to ensure static equilibrium.
§ External indeterminacy: Here there is one more external reaction force 

than required to ensure static equilibrium.

Static indeterminacy in 
Torsion
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Statically indeterminate 
torsion problems -
Displacement stiffness method

• We can also treat statically 
indeterminate systems in torsion 
with the the displacement stiffness 
method in matrix form. 

• We can make use of the same 
approach we developed for the 
statically indeterminate bars, but 
now using the torsional stiffness:

kT =
JG

L
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Example: External 
indeterminacy

A composite bar consists of two sections with diameter dA
and dB respectively is clamped on both sides at walls (points 
A and B). A torque T acts on the point where the thickness 
changes (point C).

Calculate:

§ An expression for the reaction torques at point A and B

§ The maximum shear stresses in the bar sections AC and 
CB

§ The angle of twist at point C
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Statically indeterminate torsion problems 6

§ When we encounter internal static indeterminacy in a composite shaft of two 
or more tubes or materials together, we can use the displacement stiffness 
method (all shafts have same angle of twist)

§ kt: torsional stiffness 

§ The torque for the ith shaft is then: 

§ The total torque is then:

kt =
T

�
=

JG

L
[kt] =

Nm

rad

Ti = (kt)i · �i

T =
X

i

(kt)i · �i



Example: Internal 
indeterminacy

A composite bar consists of a bar with an 
outer diameter d1 and tube with an outer 
diameter d2 joined at one end and both 
rigidly connected to the wall. Derive 
• a formula for the angle of twist for the 

composite and 
• the formula for the reaction torques at 

the wall acting on the tube and the bar. 

T
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M
E-

23
1B

 / 
ST

R
U

C
TU

R
AL

 M
EC

H
AN

IC
S

FO
R

 S
V

G
eo

rg
 F

an
tn

er
 

7



Stress concentration in 
torsion

In shafts with abrupt changes in 
dimension, large stress 
concentrations can occur
In a similar way to the stress 
concentration in tension, we can use  
a stress concentration factor to 
estimate the stress concentration

8

⌧max = K · T c

J|{z}
smaller shaft

The maximum shear stress in torsion is then:



Transmission of power by a shaft 9

§ Work: the energy developed by a force acting over a distance against a 
resistance

• Linear distance: 
• Rotational distance: 

§ Power: work done by unit of time:

§ Often used unit: horsepower (hp)

W = F ·�x

P =
T✓

t
= !T [!] =

rad

s
[P ] =

Nm

s
= W (Watt)

1hp = 33.000
ft · lb
min

= 550
ft · lb
s

= 6600
in · lb
s

= 745.7W

W = T ·�✓ [✓] = rad



Common Imperial Units

1 in = 2.54cm
1 ft =12 in = 0.3048 m
1 lb = 16 oz = 0.4536kg
1 gallon = 3.7854 l
1 psi = 1 pound/in2 = 6894.8 Pa
1hp = 300 (ft*lb)/min = 39600 (in*lb)/min= 
745.7W

10



Examples for Torsion:
Torsional stress 
concentration

Find the required fillet radius for the 
juncture of a 6-in.-diameter shaft with 
a 4-in.-diameter segment if the shaft 
transmits 110 hp at 100 rpm and the 
maximum shear stress is limited to 
8000 psi. 
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Torsion of a rectangular bar 12

§ In our derivation for the torsion formula we have assumed that plane sections 
remain plane in torsion. This is only true for members with infinite axial 
symmetry (such as round bars or tubes).

§ In a rectangular bar, there is no such symmetry and the cross sections will 
deform. 

§ For rectangular bars of length L and sides a&b (a>b) we can use the formulas:

§ And the torsion formula:

§ The torsional stiffness is then:

⌧max =
TL

C1 a b2

� =
TL

C2 a b3G

kt =
T

�
= C2ab

3G

L



Torsion of a rectangular bar 13

§ For rectangular bars of length L
and sides a&b (a>b) we can use 
the formulas:

§ And the torsion formula:

§ The torsional stiffness is then:

⌧max =
TL

C1 a b2

� =
TL

C2 a b3G

kt =
T

�
= C2ab

3G

L

C2C1



Torsion of an inelastic 
circular member

14

§ If we are beyond the linear elastic regime, our torsion formula is no longer 
correct (we’ve assumed Hooke’s law during its derivation)!

§ However, the assumption that shear strain is linear with r still holds:

§ Since we no longer have Hooke’s law, we have to use the torsional stress-
strain diagram of the material to find the shear stress

§ For each r we can calculate the corresponding γ, and from the stress-strain 
curve we can read the stress τ at each r. We can plot then τ as a function of r

�(r) =
r

c
�max



Torsion of an inelastic 
circular member
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§ With the known stress distribution we 
can then calculate the internal 
resisting torque at any given cross-
section:

§ For a circular cross section:

§ If there is no analytical expression for 
τ(r), we have to solve the integral 
numerically

T =

Z

A
(⌧dA)r

T = 2⇡

Z c

0
r2⌧(r)dr



Torsion of an inelastic bar: Ultimate 
torque

16

§ Ultimate torque TU: the maximum torque a member can take before failure
§ We can calculate TU by setting τmax= τU and do the integration or do a torsion 

experiment by twisting the circular member until it breaks.


